Synthesis of nanostructured materials by using metal-cyanide coordination polymers and their lithium storage properties.
نویسندگان
چکیده
Herein, we demonstrate a novel and simple two-step process for preparing LiCoO2 nanocrystals by using a Prussian blue analogue Co3[Co(CN)6]2 as a precursor. The resultant LiCoO2 nanoparticles possess single crystalline nature and good uniformity with an average size of ca. 360 nm. The unique nanostructure of LiCoO2 provides relatively shorter Li(+) diffusion pathways, thus facilitating the fast kinetics of electrochemical reactions. As a consequence, high reversible capacity, excellent cycling stability and rate capability are achieved with these nanocrystals as cathodes for lithium storage. The LiCoO2 nanocrystals deliver specific capacities of 154.5, 135.8, 119, and 100.3 mA h g(-1) at 0.2, 0.4, 1, and 2 C rates, respectively. Even at a high current density of 4 C, a reversible capacity of 87 mA h g(-1) could be maintained. Importantly, a capacity retention of 83.4% after 100 cycles is achieved at a constant discharge rate of 1 C. Furthermore, owing to facile control of the morphology and size of Prussian blue analogues by varying process parameters, as well as the tailored design of multi-component metal-cyanide hybrid coordination polymers, with which we have successfully prepared porous Fe2O3@NixCo3-xO4 nanocubes, one of the potential anode materials for lithium-ion batteries, such a simple and scalable approach could also be applied to the synthesis of other nanomaterials for energy storage devices.
منابع مشابه
Sonochemical Synthesis of Novel Nano Flower Lead(II) Metal-organic Coordination Polymer: A New Precursor to Produce Nano-sized PbO
Metal-organic coordination polymers are a class of organic–inorganic materials consists of metal ions linked together through multi-dentate organic ligands, to form a polymeric chain. These materials have received a great deal of attention in a wide range of different areassuch as catalysis, sensing, luminescence, separation and storage used . The new nano flowerPb(II) 1Dmetal-organic chain {[P...
متن کاملDevelopments in Nanostructured Cathode Materials for High-Performance Lithium-Ion Batteries
Nanostructured materials lie at the heart of fundamental advances in efficient energy storage and/or conversion, in which surface processes and transport kinetics play determining roles. This Review describes some recent developments in the synthesis and characterization of nanostructured cathode materials, including lithium transition metal oxides, vanadium oxides, manganese oxides, lithium ph...
متن کاملLithium Disilicate (Li2Si2O5): Mild Condition Hydrothermal Synthesis, Characterization and Optical Properties
Lithium disilicate nano-powders were synthesized via a mild condition hydrothermal reaction at 180 ºC for 48 and 72 h with a non stoichiometric1:2 Li:Si molar ratio in NaOH aqueous solution using Li2CO3 and SiO2.H2O as raw materials. The synthesized materials were characterized by powder X-ray diffraction (PXRD) technique and Fourier transform infrared (FTIR) spectroscopy. The XRD data showed t...
متن کاملNovel Nanocomposite Materials for Advanced Li-Ion Rechargeable Batteries
Nanostructured materials lie at the heart of fundamental advances in efficient energy storage and/or conversion, in which surface processes and transport kinetics play determining roles. Nanocomposite materials will have a further enhancement in properties compared to their constituent phases. This Review describes some recent developments of nanocomposite materials for high-performance Li-ion ...
متن کاملControlled synthesis of heterogeneous metal-titania nanostructures and their applications.
We describe a new synthetic approach to heterogeneous metal-TiO(2) nanomaterials based on conversion of Ti(3+) to hydrous TiO(2) occurring uniquely on the nanostructured metallic surfaces such as Pt, Au, and Ni nanowires and nanoparticles. The TiO(2) growth mechanism was studied by designing an electrochemical cell. A variety of heterogeneous metal-TiO(2) nanostructures, such as segmented meta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 5 22 شماره
صفحات -
تاریخ انتشار 2013